Zhi Wang (FSU)

COP4610: Operating Systems

Xv6 Processes

Zhi Wang
Florida State University

Spring 2015

COP4610: Operating Systems

Spring 2015

1/9



Process Overview

Process Address Space

OXFFFFFFFF

0x80100000
0x80000000

free memory

text and data

BIOS

heap

USer stack

user text
and data

kemel

user

@ Each process has a separate page table that defines its address space

@ The (same) kernel is mapped in all the processes
w the kernel can safely switch user page tables without disruption

@ The process can run either in the kernel (syscall) or in the user-space

Zhi Wang (FSU)

COP4610: Operating Systems

Spring 2015 2/9



Process Control Block (proc.h)

// Per-process state
struct proc {

uint sz; // Size of process memory (bytes)
pde_t* pgdir; // Page table
char *kstack; // Bottom of kernel stack for this process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context *context; // swtch() here to run process
void *chan; // 1If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file *ofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)

I

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 3/9



Process Overview

Process Control Block

@ pgdir: the process's page table
m data structure used by x86 to map virtual address to physical ones

@ kstack: the bottom of the kernel stack for this process
w each process has a user stack and a kernel stack
m kernel stack is empty when the process is running in the user space

e tf: saved user-space state when entering the kernel (e.g., via syscall)

@ context: saved kernel state for context switch (swtch)

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 4/9



Initial Kernel Address Space

OxFFFFFFFF

text and data .
0x80100000
0x80000000 —>{—BIOS——|

Top physical
memory
4 Mbyte
kernel text
text and data - | and data
0. L BIOS 1. 0
Virtual address space Physical memory

@ Boot loader loads the kernel (xv6.img) at physical address 0x100000

@ The kernel starts execution at entry (entry.S)
w entry loads initial page table and jumps to high addresses (main)
w main runs in the proper kernel address space (main.c)

@ There is no process yet...

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 5/9



The First Process

@ First process must be manually crafted
m no process to call fork and exec

@ main calls userinit to create the first process, which becomes init
w init is the first user process (init.c)

@ userinit allocates a PCB, and initializes the kernel stack as if the
process has just made a fork syscall (proc.c)
it returns to the user space just like a forked child process

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015

6/9



Genesis

userinit

@ call allocproc to allocate a new PCB

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 7/9



Genesis

userinit

@ call allocproc to allocate a new PCB

@ call setupkvm to set up the kernel address space
w the kernel is mapped in every process’ address space, remember?

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 7/9



Genesis

userinit

@ call allocproc to allocate a new PCB

@ call setupkvm to set up the kernel address space
w the kernel is mapped in every process’ address space, remember?

@ call inituvm to copy initcode (initcode.S) to user-space
w initcode simply calls exec(“init”, 0) (init.c)

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 7/9



Genesis

userinit

@ call allocproc to allocate a new PCB

@ call setupkvm to set up the kernel address space

w the kernel is mapped in every process’ address space, remember?
@ call inituvm to copy initcode (initcode.S) to user-space

w initcode simply calls exec(“init”, 0) (init.c)
@ set up trapframe to “return” to initcode

m p->tf->eip = 0; // beginning of initcode.S

m the kernel returns to p->tf->eip after syscall, remember?

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015

7/9



Genesis

allocproc

@ loop through ptable for a free PCB
@ allocate the kernel stack

© set up the kernel stack for the new process
m the “only” way to create a new process is through fork
m the stack is set up for the forked child to return to user space
 now, a quick trip to fork (proc.h)

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015

8/9



allocproc

top of new stack

esp
eip
p->tf edi

address forkret will return to trapret

eip
p->context edi

(empty)

p->kstack

@ context switch (swtch) pops p->context off the kernel stack, and
returns to trapret

@ trapret restores user registers (p->tf)and returns to p->tf->eip
m p->tf->eip points to initcode

Zhi Wang (FSU) COP4610: Operating Systems Spring 2015 9/9



	Process Overview
	Genesis

